Unix & Linux Stack Exchange
Q&A for users of Linux, FreeBSD and other Unix-like operating systems
Latest Questions
0
votes
1
answers
281
views
Apt package pinning: not working for libcudnn8
I set up the following pinning rule: ``` Package: cuda PIN: version 12.1.0-1 Pin-Priority: 9999 Package: libcudnn8 PIN: version 8.5.0.96-1+cuda11.7 Pin-Priority: 99999 Package: libcudnn8-dev PIN: version 8.5.0.96-1+cuda11.7 Pin-Priority: 9999 ``` When I inspect the pinned packages, I receive the fol...
I set up the following pinning rule:
Package: cuda
PIN: version 12.1.0-1
Pin-Priority: 9999
Package: libcudnn8
PIN: version 8.5.0.96-1+cuda11.7
Pin-Priority: 99999
Package: libcudnn8-dev
PIN: version 8.5.0.96-1+cuda11.7
Pin-Priority: 9999
When I inspect the pinned packages, I receive the following output:
/etc/apt/preferences.d$ apt-cache policy
Package files:
...
Pinned packages:
xserver-xorg-video-nouveau -> 1:1.0.17-2build1 with priority 9999
libnvidia-common-525 -> 525.105.17-0ubuntu0.22.04.1 with priority 9999
libnvidia-fbc1-525 -> 525.105.17-0ubuntu0.22.04.1 with priority 9999
libnvidia-gl-525 -> 525.105.17-0ubuntu0.22.04.1 with priority 9999
libnvidia-extra-525 -> 525.105.17-0ubuntu0.22.04.1 with priority 9999
nvidia-compute-utils-525 -> 525.105.17-0ubuntu0.22.04.1 with priority 9999
nvidia-container-runtime -> 3.12.0-1 with priority 9999
libnvidia-encode-525 -> 525.105.17-0ubuntu0.22.04.1 with priority 9999
nsight-compute -> 2021.3.1.4~11.5.1-1ubuntu1 with priority -1
nvidia-utils-525 -> 525.105.17-0ubuntu0.22.04.1 with priority 9999
ubuntu-drivers-common -> 1:0.9.6.1 with priority 9999
xserver-xorg-video-nvidia-525 -> 525.105.17-0ubuntu0.22.04.1 with priority 9999
libvdpau1 -> 1.4-3build2 with priority 9999
libnvidia-decode-525 -> 525.105.17-0ubuntu0.22.04.1 with priority 9999
libnvidia-egl-wayland1 -> 1:1.1.9-1.1 with priority 9999
docker-ce -> 5:20.10.23~3-0~ubuntu-jammy with priority 9999
nvidia-kernel-common-525 -> 525.105.17-0ubuntu0.22.04.1 with priority 9999
vdpau-driver-all -> 1.4-3build2 with priority 9999
telegraf -> 1.25.2-1 with priority 9999
libnvidia-cfg1-525 -> 525.105.17-0ubuntu0.22.04.1 with priority 9999
nvidia-kernel-source-525 -> 525.105.17-0ubuntu0.22.04.1 with priority 9999
libnvidia-compute-525 -> 525.105.17-0ubuntu0.22.04.1 with priority 9999
nsight-systems -> 2021.3.3.2~11.5.1-1ubuntu1 with priority -1
libcudnn8-dev -> 8.5.0.96-1+cuda11.7 with priority 9999
so pinning the libcundnn8-dev package was successfully pinned by the configuration file above, but libcundd8 wasn't pinned successfully.
This is also confirmed by the following output:
/etc/apt/preferences.d$ apt-cache policy libcudnn8
libcudnn8:
Installed: 8.5.0.96-1+cuda11.7
Candidate: 8.9.0.131-1+cuda12.1
Version table:
8.9.0.131-1+cuda12.1 600
600 https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/x86_64 Packages
8.9.0.131-1+cuda11.8 600
600 https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/x86_64 Packages
8.8.1.3-1+cuda12.0 600
600 https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/x86_64 Packages
8.8.1.3-1+cuda11.8 600
600 https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/x86_64 Packages
8.8.0.121-1+cuda12.0 600
600 https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/x86_64 Packages
8.8.0.121-1+cuda11.8 600
600 https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/x86_64 Packages
8.7.0.84-1+cuda11.8 600
600 https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/x86_64 Packages
8.6.0.163-1+cuda11.8 600
600 https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/x86_64 Packages
*** 8.5.0.96-1+cuda11.7 600
600 https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/x86_64 Packages
100 /var/lib/dpkg/status
What did I do wrong?
*edit*: fixed typo in the pin file that I made when copying the file into this question.
*edit*: also tried giving the libcudnn8 package the same priority as the other packages (9999).
mutableVoid
(168 rep)
Apr 17, 2023, 12:00 PM
• Last activity: Apr 17, 2023, 12:45 PM
2
votes
1
answers
488
views
Stuck at booting after upgrading
My GPU is **NVIDIA - GeForce RTX 3090 Ti**, and the OS is **Ubuntu 18.04**. As my code didn’t work, I checked the versions of python, pytorch, cuda, and cudnn. * Python: 3.6 * torch. version : 1.4.0 * torch.version.cuda : 10.1 (nvidia-smi shows CUDA version 11.3) * cudnn: 7.6.3 These are not compati...
My GPU is **NVIDIA - GeForce RTX 3090 Ti**, and the OS is **Ubuntu 18.04**.
As my code didn’t work, I checked the versions of python, pytorch, cuda, and cudnn.
* Python: 3.6
* torch. version : 1.4.0
* torch.version.cuda : 10.1 (nvidia-smi shows CUDA version 11.3)
* cudnn: 7.6.3
These are not compatible with 3090 Ti, I successfully upgraded **Python to 3.9**, and **Pytorch to 1.12.1+cu102**.
However, “pip3 install cuda-python” and “pip install nvidia-cudnn” did not work for me. So I followed the steps on the website.
* **For cuda (tried version 11.8)**: https://developer.nvidia.com/cuda-downloads?target_os=Linux&target_arch=x86_64&Distribution=Ubuntu&target_version=18.04&target_type=deb_local
* **For cudnn (tried version 8.6.0, tar file installation)**: Installation Guide :: NVIDIA Deep Learning cuDNN Documentation
After the installation steps, nvidia-smi shows “Failed to initialize NVML: Driver/library version mismatch”.
I found that rebooting would work, but the system is stuck at the rebooting step.
dpkg -l |grep nvidia
iU libnvidia-cfg1-520:amd64 520.61.05-0ubuntu1 amd64 NVIDIA binary OpenGL/GLX configuration library
ii libnvidia-common-465 465.19.01-0ubuntu1 all Shared files used by the NVIDIA libraries
iU libnvidia-common-520 520.61.05-0ubuntu1 all Shared files used by the NVIDIA libraries
rc libnvidia-compute-465:amd64 465.19.01-0ubuntu1 amd64 NVIDIA libcompute package
iU libnvidia-compute-520:amd64 520.61.05-0ubuntu1 amd64 NVIDIA libcompute package
iU libnvidia-compute-520:i386 520.61.05-0ubuntu1 i386 NVIDIA libcompute package
ii libnvidia-container-tools 1.11.0-1 amd64 NVIDIA container runtime library (command-line tools)
ii libnvidia-container1:amd64 1.11.0-1 amd64 NVIDIA container runtime library
iU libnvidia-decode-520:amd64 520.61.05-0ubuntu1 amd64 NVIDIA Video Decoding runtime libraries
iU libnvidia-decode-520:i386 520.61.05-0ubuntu1 i386 NVIDIA Video Decoding runtime libraries
iU libnvidia-encode-520:amd64 520.61.05-0ubuntu1 amd64 NVENC Video Encoding runtime library
iU libnvidia-encode-520:i386 520.61.05-0ubuntu1 i386 NVENC Video Encoding runtime library
iU libnvidia-extra-520:amd64 520.61.05-0ubuntu1 amd64 Extra libraries for the NVIDIA driver
iU libnvidia-fbc1-520:amd64 520.61.05-0ubuntu1 amd64 NVIDIA OpenGL-based Framebuffer Capture runtime library
iU libnvidia-fbc1-520:i386 520.61.05-0ubuntu1 i386 NVIDIA OpenGL-based Framebuffer Capture runtime library
iU libnvidia-gl-520:amd64 520.61.05-0ubuntu1 amd64 NVIDIA OpenGL/GLX/EGL/GLES GLVND libraries and Vulkan ICD
iU libnvidia-gl-520:i386 520.61.05-0ubuntu1 i386 NVIDIA OpenGL/GLX/EGL/GLES GLVND libraries and Vulkan ICD
rc nvidia-compute-utils-465 465.19.01-0ubuntu1 amd64 NVIDIA compute utilities
iU nvidia-compute-utils-520 520.61.05-0ubuntu1 amd64 NVIDIA compute utilities
ii nvidia-container-toolkit 1.11.0-1 amd64 NVIDIA Container toolkit
ii nvidia-container-toolkit-base 1.11.0-1 amd64 NVIDIA Container Toolkit Base
rc nvidia-dkms-465 465.19.01-0ubuntu1 amd64 NVIDIA DKMS package
iU nvidia-dkms-520 520.61.05-0ubuntu1 amd64 NVIDIA DKMS package
iU nvidia-driver-520 520.61.05-0ubuntu1 amd64 NVIDIA driver metapackage
rc nvidia-kernel-common-465 465.19.01-0ubuntu1 amd64 Shared files used with the kernel module
iU nvidia-kernel-common-520 520.61.05-0ubuntu1 amd64 Shared files used with the kernel module
iU nvidia-kernel-source-520 520.61.05-0ubuntu1 amd64 NVIDIA kernel source package
iU nvidia-modprobe 520.61.05-0ubuntu1 amd64 Load the NVIDIA kernel driver and create device files
ii nvidia-opencl-dev:amd64 9.1.85-3ubuntu1 amd64 NVIDIA OpenCL development files
ii nvidia-prime 0.8.16~0.18.04.1 all Tools to enable NVIDIA’s Prime
iU nvidia-settings 520.61.05-0ubuntu1 amd64 Tool for configuring the NVIDIA graphics driver
iU nvidia-utils-520 520.61.05-0ubuntu1 amd64 NVIDIA driver support binaries
iU xserver-xorg-video-nvidia-520 520.61.05-0ubuntu1 amd64 NVIDIA binary Xorg driver
ls -l /usr/lib/x86_64-linux-gnu/libcuda*
lrwxrwxrwx 1 root root 28 Sep 29 05:22 /usr/lib/x86_64-linux-gnu/libcudadebugger.so.1 → libcudadebugger.so.520.61.05
-rw-r–r-- 1 root root 10934360 Sep 29 01:20 /usr/lib/x86_64-linux-gnu/libcudadebugger.so.520.61.05
lrwxrwxrwx 1 root root 12 Sep 29 05:22 /usr/lib/x86_64-linux-gnu/libcuda.so → libcuda.so.1
lrwxrwxrwx 1 root root 20 Sep 29 05:22 /usr/lib/x86_64-linux-gnu/libcuda.so.1 → libcuda.so.520.61.05
-rw-r–r-- 1 root root 26284256 Sep 29 01:56 /usr/lib/x86_64-linux-gnu/libcuda.so.520.61.05
dkms status
virtualbox, 5.2.42, 5.4.0-126-generic, x86_64: installed
virtualbox, 5.2.42, 5.4.0-72-generic, x86_64: installed
user12077723
(23 rep)
Oct 19, 2022, 10:07 PM
• Last activity: Oct 28, 2022, 09:19 AM
1
votes
2
answers
3011
views
Can't build Darknet with CUDNN support
I`m trying to compile the sources from https://github.com/pjreddie/darknet using manjaro linux. But the build is having problems when I try to use the CUDNN switch. g++ -DOPENCV -I/usr/include/opencv4/opencv2/ `pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN -Wall -Wfatal-errors...
I`m trying to compile the sources from https://github.com/pjreddie/darknet using manjaro linux. But the build is having problems when I try to use the CUDNN switch.
g++ -DOPENCV -I/usr/include/opencv4/opencv2/
pkg-config --cflags opencv
-DGPU -I/usr/local/cuda/include/ -DCUDNN -Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include -c ./src/http_stream.cpp -o obj/http_stream.o
Package opencv was not found in the pkg-config search path.
Perhaps you should add the directory containing `opencv.pc'
to the PKG_CONFIG_PATH environment variable
Package 'opencv', required by 'virtual:world', not found
./src/http_stream.cpp:46:10: fatal error: opencv2/opencv.hpp: Arquivo ou diretório inexistente
#include "opencv2/opencv.hpp"
^~~~~~~~~~~~~~~~~~~~
Here is my make file.
GPU=1
CUDNN=1
CUDNN_HALF=0
OPENCV=1
AVX=0
OPENMP=0
LIBSO=0
# set GPU=1 and CUDNN=1 to speedup on GPU
# set CUDNN_HALF=1 to further speedup 3 x times (Mixed-precision using Tensor Cores) on GPU Tesla V100, Titan V, DGX-2
# set AVX=1 and OPENMP=1 to speedup on CPU (if error occurs then set AVX=0)
DEBUG=0
ARCH= -gencode arch=compute_30,code=sm_30 \
-gencode arch=compute_35,code=sm_35 \
-gencode arch=compute_50,code=[sm_50,compute_50] \
-gencode arch=compute_52,code=[sm_52,compute_52] \
-gencode arch=compute_61,code=[sm_61,compute_61]
OS := $(shell uname)
# Tesla V100
# ARCH= -gencode arch=compute_70,code=[sm_70,compute_70]
# GTX 1080, GTX 1070, GTX 1060, GTX 1050, GTX 1030, Titan Xp, Tesla P40, Tesla P4
ARCH= -gencode arch=compute_61,code=sm_61 -gencode arch=compute_61,code=compute_61
# GP100/Tesla P100 � DGX-1
# ARCH= -gencode arch=compute_60,code=sm_60
# For Jetson TX1, Tegra X1, DRIVE CX, DRIVE PX - uncomment:
# ARCH= -gencode arch=compute_53,code=[sm_53,compute_53]
# For Jetson Tx2 or Drive-PX2 uncomment:
# ARCH= -gencode arch=compute_62,code=[sm_62,compute_62]
VPATH=./src/
EXEC=darknet
OBJDIR=./obj/
ifeq ($(LIBSO), 1)
LIBNAMESO=darknet.so
APPNAMESO=uselib
endif
CC=gcc
CPP=g++
NVCC=nvcc
OPTS=-Ofast
LDFLAGS= -lm -pthread
COMMON=
CFLAGS=-Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas
ifeq ($(DEBUG), 1)
OPTS= -O0 -g
else
ifeq ($(AVX), 1)
CFLAGS+= -ffp-contract=fast -mavx -msse4.1 -msse4a
endif
endif
CFLAGS+=$(OPTS)
ifeq ($(OPENCV), 1)
COMMON+= -DOPENCV -I/usr/include/opencv4/opencv2/
CFLAGS+= -DOPENCV
LDFLAGS+= pkg-config --libs opencv
COMMON+= pkg-config --cflags opencv
endif
ifeq ($(OPENMP), 1)
CFLAGS+= -fopenmp
LDFLAGS+= -lgomp
endif
ifeq ($(GPU), 1)
COMMON+= -DGPU -I/usr/local/cuda/include/
CFLAGS+= -DGPU
ifeq ($(OS),Darwin) #MAC
LDFLAGS+= -L/usr/local/cuda/lib -lcuda -lcudart -lcublas -lcurand
else
LDFLAGS+= -L/usr/local/cuda/lib64 -lcuda -lcudart -lcublas -lcurand
endif
endif
ifeq ($(CUDNN), 1)
COMMON+= -DCUDNN
ifeq ($(OS),Darwin) #MAC
CFLAGS+= -DCUDNN -I/usr/local/cuda/include
LDFLAGS+= -L/usr/local/cuda/lib -lcudnn
else
CFLAGS+= -DCUDNN -I/usr/local/cudnn/include
LDFLAGS+= -L/usr/local/cudnn/lib64 -lcudnn
endif
endif
ifeq ($(CUDNN_HALF), 1)
COMMON+= -DCUDNN_HALF
CFLAGS+= -DCUDNN_HALF
ARCH+= -gencode arch=compute_70,code=[sm_70,compute_70]
endif
OBJ=http_stream.o gemm.o utils.o cuda.o convolutional_layer.o list.o image.o activations.o im2col.o col2im.o blas.o crop_layer.o dropout_layer.o maxpool_layer.o softmax_layer.o data.o matrix.o network.o connected_layer.o cost_layer.o parser.o option_list.o darknet.o detection_layer.o captcha.o route_layer.o writing.o box.o nightmare.o normalization_layer.o avgpool_layer.o coco.o dice.o yolo.o detector.o layer.o compare.o classifier.o local_layer.o swag.o shortcut_layer.o activation_layer.o rnn_layer.o gru_layer.o rnn.o rnn_vid.o crnn_layer.o demo.o tag.o cifar.o go.o batchnorm_layer.o art.o region_layer.o reorg_layer.o reorg_old_layer.o super.o voxel.o tree.o yolo_layer.o upsample_layer.o
ifeq ($(GPU), 1)
LDFLAGS+= -lstdc++
OBJ+=convolutional_kernels.o activation_kernels.o im2col_kernels.o col2im_kernels.o blas_kernels.o crop_layer_kernels.o dropout_layer_kernels.o maxpool_layer_kernels.o network_kernels.o avgpool_layer_kernels.o
endif
OBJS = $(addprefix $(OBJDIR), $(OBJ))
DEPS = $(wildcard src/*.h) Makefile
all: obj backup results $(EXEC) $(LIBNAMESO) $(APPNAMESO)
ifeq ($(LIBSO), 1)
CFLAGS+= -fPIC
$(LIBNAMESO): $(OBJS) src/yolo_v2_class.hpp src/yolo_v2_class.cpp
$(CPP) -shared -std=c++11 -fvisibility=hidden -DYOLODLL_EXPORTS $(COMMON) $(CFLAGS) $(OBJS) src/yolo_v2_class.cpp -o $@ $(LDFLAGS)
$(APPNAMESO): $(LIBNAMESO) src/yolo_v2_class.hpp src/yolo_console_dll.cpp
$(CPP) -std=c++11 $(COMMON) $(CFLAGS) -o $@ src/yolo_console_dll.cpp $(LDFLAGS) -L ./ -l:$(LIBNAMESO)
endif
$(EXEC): $(OBJS)
$(CPP) $(COMMON) $(CFLAGS) $^ -o $@ $(LDFLAGS)
$(OBJDIR)%.o: %.c $(DEPS)
$(CC) $(COMMON) $(CFLAGS) -c $< -o $@
$(OBJDIR)%.o: %.cpp $(DEPS)
$(CPP) $(COMMON) $(CFLAGS) -c $< -o $@
$(OBJDIR)%.o: %.cu $(DEPS)
$(NVCC) $(ARCH) $(COMMON) --compiler-options "$(CFLAGS)" -c $< -o $@
obj:
mkdir -p obj
backup:
mkdir -p backup
results:
mkdir -p results
.PHONY: clean
clean:
rm -rf $(OBJS) $(EXEC) $(LIBNAMESO) $(APPNAMESO)
It seems something related with new gcc or opencv version but I`m not right.
vfbsilva
(3757 rep)
May 18, 2019, 03:05 AM
• Last activity: Jan 26, 2021, 07:11 PM
0
votes
0
answers
1419
views
Cuda with Conda installation - libcuda.so.1 not found
I've been trying to install CONDA with Cuda in Centos 7. I am following this [installation][1]. When I go through with the install I get no errors thrown until I try to import tensorflow in the environment. When I do, the following stack-trace accompanies a failure to import: ``` File "/root/anacond...
I've been trying to install CONDA with Cuda in Centos 7. I am following this installation . When I go through with the install I get no errors thrown until I try to import tensorflow in the environment. When I do, the following stack-trace accompanies a failure to import:
File "/root/anaconda3/envs/tf_gpu/lib/python3.7/site-packages/tensorflow/python/pywrap_tensorflow.py", line 58, in
from tensorflow.python.pywrap_tensorflow_internal import *
File "/root/anaconda3/envs/tf_gpu/lib/python3.7/site-packages/tensorflow/python/pywrap_tensorflow_internal.py", line 28, in
_pywrap_tensorflow_internal = swig_import_helper()
File "/root/anaconda3/envs/tf_gpu/lib/python3.7/site-packages/tensorflow/python/pywrap_tensorflow_internal.py", line 24, in swig_import_helper
_mod = imp.load_module('_pywrap_tensorflow_internal', fp, pathname, description)
File "/root/anaconda3/envs/tf_gpu/lib/python3.7/imp.py", line 242, in load_module
return load_dynamic(name, filename, file)
File "/root/anaconda3/envs/tf_gpu/lib/python3.7/imp.py", line 342, in load_dynamic
return _load(spec)
ImportError: libcuda.so.1: cannot open shared object file: No such file or directory
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "", line 1, in
File "/root/anaconda3/envs/tf_gpu/lib/python3.7/site-packages/tensorflow/__init__.py", line 24, in
from tensorflow.python import pywrap_tensorflow # pylint: disable=unused-import
File "/root/anaconda3/envs/tf_gpu/lib/python3.7/site-packages/tensorflow/python/__init__.py", line 49, in
from tensorflow.python import pywrap_tensorflow
File "/root/anaconda3/envs/tf_gpu/lib/python3.7/site-packages/tensorflow/python/pywrap_tensorflow.py", line 74, in
raise ImportError(msg)
ImportError: Traceback (most recent call last):
File "/root/anaconda3/envs/tf_gpu/lib/python3.7/site-packages/tensorflow/python/pywrap_tensorflow.py", line 58, in
from tensorflow.python.pywrap_tensorflow_internal import *
File "/root/anaconda3/envs/tf_gpu/lib/python3.7/site-packages/tensorflow/python/pywrap_tensorflow_internal.py", line 28, in
_pywrap_tensorflow_internal = swig_import_helper()
File "/root/anaconda3/envs/tf_gpu/lib/python3.7/site-packages/tensorflow/python/pywrap_tensorflow_internal.py", line 24, in swig_import_helper
_mod = imp.load_module('_pywrap_tensorflow_internal', fp, pathname, description)
File "/root/anaconda3/envs/tf_gpu/lib/python3.7/imp.py", line 242, in load_module
return load_dynamic(name, filename, file)
File "/root/anaconda3/envs/tf_gpu/lib/python3.7/imp.py", line 342, in load_dynamic
return _load(spec)
**ImportError: libcuda.so.1: cannot open shared object file: No such file or directory**
Failed to load the native TensorFlow runtime.
See https://www.tensorflow.org/install/errors
for some common reasons and solutions. Include the entire stack trace
above this error message when asking for help.
The error is the inability to access the libcuda.so.1 resource. Am I incorrect in thinking that Conda handles all aspects of the installation?
System details:
OS: Centos7
Kernel Version: 3.10.0
Cuda version: 10.0
Conda version: 4.6.14
GPU: Nvidia 1080Ti
user355881
Jun 1, 2019, 11:07 PM
• Last activity: Jan 18, 2021, 12:11 PM
0
votes
1
answers
350
views
Installing Ubuntu 18.04 cuDNN on Ubuntu 19.10
I would like to install NVidia cuDNN on my Ubuntu 19.10 machine. The [cuDNN download page][1] only offers Ubuntu 18.04. Can I just go ahead and install an 18.04 package on 19.10 and assume that it will probably work? [1]: https://developer.nvidia.com/rdp/cudnn-download
I would like to install NVidia cuDNN on my Ubuntu 19.10 machine. The cuDNN download page only offers Ubuntu 18.04. Can I just go ahead and install an 18.04 package on 19.10 and assume that it will probably work?
Lars Ericson
(103 rep)
Nov 24, 2019, 06:50 PM
• Last activity: Nov 24, 2019, 08:22 PM
Showing page 1 of 5 total questions